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Degenerated ground states and excited states of the S = 
anisotropic antiferromagnetic Heisenberg chain in the easy 
axis region 
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$ Laboratoire de Physique Theorique et Hautes EnergiesJI, Universitt Pierre et Marie 
Curie, Tour 16, le' Ctage, 4 Place Jussieu, F-75230 Paris, France 

Received 7 February 1984 

Abstract. We reconsider the solutions of the Bethe ansatz equations for the antiferromag- 
netic XXZ model in the easy axis region. The excitations are obtained by leaving holes 
in the ground state distribution of the momenta and allowing for complex rapidities. 
Equations for the parameters of the holes are given and it is shown that the higher level 
equations contrary to earlier results have the same structure as in the planar region. The 
existence of degenerate ground states is demonstrated, and it is also shown, that distinct 
sets of excited states with analogous structure exist above both ground states. 

1. Introduction 

For almost twenty years attempts have been made to offer a better means of understand- 
ing the excited states of the anisotropic Heisenberg model in the antiferromagnetic case. 

The Hamiltonian of the problem is: 

with periodic boundary conditions, N is assumed to be even, S; ,  Ss[, S', are the 
components of spin-4 operators. 

In order to describe the eigenstates of (1) the Bethe ansatz is generally used (Bethe 
1931). The ground state is known to be described by real momenta {kj} and the 
corresponding equidistant set of integers (or half-odd integers) appearing in Bethe 
ansatz equations (Yang and Yang 1966). The excited states are sought by leaving holes 
in the integer (or half-odd integer) set and by allowing complex wavenumbers. 

Des Cloizeaux and Gaudin (1966) investigated the spin-wave states of the system 
and Johnson et a1 (1973) found the dispersion relation for the low-lying excitations 
using the results for the transfer matrix of the eight-vertex model. 

Recently Woynarovich (1982) in part of the planar region, and Babelon et a1 (1983a 
hereafter referred to as BW) in the whole antiferromagnetic region analysed the Bethe 
ansatz equations of the XXZ model. They expressed the density of real roots by the 
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parameters of holes and complex rapidities and found a system of coupled equations 
containing only the parameters of the excitations. 

It is well known (Orbach 1958, Babelon et a1 1983b) that in the region p >  1 the 
antiferromagnetic ground state is two-fold degenerate when N + Co. Orbach has pointed 
out that these two ground states correspond to two sets of integers both increasing by 
two and shifted by one relative to each other (see equation (3) of the present paper). 
If one calculates only the density of the real roots then no distinction can be made 
between these two states. 

Our aim is to investigate how this ‘second’ ground state and also the excitations 
above it can be obtained from Bethe ansatz equations and what is the difference 
between the two types of excitations. 

Our method is similar to that used by Woynarovich (1982) and we express the 
values of the real rapidities themselves because this enables us to distinguish between 
the two types of states. The main point is that we fix the boundaries of the region 
containing the real roots-but only at the end of the calculation thus avoiding the loss 
of certain solutions. 

In this way we obtain the two degenerated ground states and the excitations above 
them. We write down the equations for the parameters of the holes as well and it 
turns out that the allowed values of these parameters are different for the two types 
of excitations. The difference is of the order of 1/ N. The structure of these excitations 
and their spectrum are the same as found by BW, so the two types of excitations 
become degenerate in the N + m  limit like the ground states. 

During the calculations it turns out that the higher level equations for the complex 
roots take a simpler form than found by BW and so the structure of these equations 
is the same for the whole antiferromagnetic region - 1 < p < CO. 

In § 2 we introduce the general formalism; in 0 3 we rederive the density of real 
rapidities but do not fix the boundaries of the region (only its length) that will contain 
the real roots. This allows us to obtain the ground state and excitations of the second 
type. Section 4 gives the higher level equations in simpler form, and the equations for 
the holes and the real roots; the differences between the two types of states are discussed. 
In P 5 we deal with the energy and momentum of these states, and we provide a 
summary of our results in 0 6 .  

2. Formalism 

It is well known that (1) can be diagonalised by Bethe’s ansatz (see for e.g. Orbach 
1958) if the phases and momenta satisfy the following set of coupled equations: 

I cot fk, -cot fkp cot &p = - p 
( 1 - p )  cot f k, cot f ka - ( 1 + p )  

where a, P = 1, . . . , r and r is connected with the total spin projection S’ = $N - r. 
Moreover the following conventions are used: 

OGRe k < 2 r ,  - - r < R e + G r .  (4) 
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The energy and momentum of a state are given by 
I , 

E -EF= C (COS k , - p ) ,  K = k,. 
u = I  o s 1  

Here EF = aNp is the energy of the ferromagnetic state. 
In order to solve the system of equations (2),  (3) it is useful to introduce auxiliary 

variables, the so-called rapidities. In the case p > 1 the following choice is suitable 
(Walker 1959): 

p =cosh y, o <  y<co ( 6 )  

cot tkU = coth f y tan 7,. (7) 

Here Re 7 for the sake of unicity is restricted to an interval of length .rr, but the ends 
of this interval are not fixed at this stage. 

Moreover let us define the following function: 

sin(z + i a )  
sin( z - ia) 

4 ( z ,  a )  = - i  In = 2 cot-’(coth a tan z )  

where the cut of the In function is on the positive real semiaxis. Using these variables 
and functions we can write the Bethe ansatz equations (equations (2), (3 ) )  in a more 
tractable form: 

, 
W ( 7 , ,  t Y )  =2.rrL + c 4(77, - 77/39 Y) 

@ = I  

where 1, is a half-odd integer. 
The energy and momentum can be expressed by the rapidities 

L o=I  o = l  

where 4 ’ ( z ,  a )  = (a /dz)+(z,  a ) .  
We shall use the Fourier expansion of the above functions 

0. 

4 ’ ( z ,  a )  = c 4 k ( y ,  a )  e2imx, z = x + i y  
m=-m 

where 
y > a: if m > 0,O otherwise 

y < -a :  4 sinh(2alml) e-2ym if m <O,O otherwise 

4 sinh(2alml) e-2ym 
2 e-2=lml e - 2 ~ m  6kb, a ) =  Iyl<a: - 

y >  a :  -2ia +27~f,(x) 

I 
and 

‘h(”a)e2imx+ ly j<a:  .rr-2z+2.rrf2(x) 1 y < -a :  2ia +27rf1(x). 
4 ( 5 a ) =  c 

m # o  2im 

Here f , (x)  and f2(x) are functions taking only integer values: 

n integer. i 1 i f ( 2 n - I ) . r r / 2 < ~ < 2 n ~ / 2  
if 2 n ~ / 2 <  x < (2n + 1)rr/2 

if (2n - 1)  7r/2 < x < ( 2 n  + 1 ~ / 2  

f1(x)  = { () 
f i b )  = n 

(9) 
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3. The equations for the real rapidities 

In this section we rederive the expression for the density of real roots and give a 
formula for the rapidities themselves. It is known that the complex roots appear in 
conjugated pairs ( v1 = ut f iTt, T~ > 0) and it is necessary to make a distinction between 
close (7,< y )  and wide (T,> y )  pairs ( B W ) .  

If M ,  N,, N ,  represent the number of real roots, close and wide pairs, respectively, 
equations (9) for the real roots take the form: 

I '  
A m  + c = l  N c )  N 

N - M - 2 N c  e2"~, 

N m#O 2im 
17j+2 c uc =2n' c -  

where 

and 

1 = I  c =  I n' = I 

is again a half-odd integer. 
The left-hand side of (16) is the sum of a linear and a periodic function and is a 

monotonically decreasing (if N is large) continuous function of 7,. All the real roots 
must fall within an interval of length T. This requirement restricts the number P of 
the half-odd integers on the right-hand side of (16) which is apparently the sum of 
the number of real roots and the number of holes Nh in the distribution of real roots: 

P =  N -  M - 2 N c =  M + N h  (19) 

(20) 

( 2 1 )  

N is even so Nh  is even as well and from (19) 

P = i N  +iNh - N,. M="-" - N  
2 2 h  c, 

This determines the spin projection: 

S' = I N  2 - r = i N  - M - 2 N ,  - 2 N ,  = $Nh - N ,  - 2 N,. 

Note that the beginning (or end) of the I '  half-odd integer set is not fixed yet. 
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We can now suppose that ~ ( x ) :  R + R is a continuous monotonically decreasing 
function for which 

T, = T f I : /N )  (22) 

Then the RHS of (16) takes the form 27777-'(77,). Let us require that (16) holds not 
only for the real roots T, but for all real values w. This gives us the possibility to 
determine the unknown T - ' (  w )  function 

Taking the derivative of (23) with respect to w we get 
a 

A,  e 2 i m w -  - 2TU( w) 
m=-m 

where a ( w )  = (d/dw)T-l(w) is apparently a periodic function 
X 

a ( w )  = G,,, e2imw. 
m=-cc 

Then, from (24), we see that 

A,,, = 277~5~. 

Remember that A,,, contains G,,, through the sum over real roots (see (17)): 

where 

is the parameter of a hole in the I' set ( h  = 1, . . . , Nh), and I: = I; + P - j .  The first 
term of the RHS of (27) can be rewritten in integral form using the formula 

After changing the variable of integration we get: 

where 

Tmin = T(I ; /  N + 1 /2N) ,  Tmax = T ( I L /  N -  1 / 2 N )  (31) 

are the boundaries of the interval containing the real roots and it is assumed that 
Tmax - Tmin = T. 



3034 A Virosztek and F Woynarovich 

Now 6,,, can be evaluated from ( 2 6 )  

This expression is proportional to the regular density of real roots derived by BW (the 
coefficient is - N ) .  &,,, contains only the complex roots and the holes as parameters. 
We are now able to determine the T - ' (  w )  function on the RHS of ( 2 3 )  after evaluating 
the sum of real roots on the LHS of ( 2 3 )  in the same manner as in ( 3 0 )  

Then 

Equations (31) must be satisfied, so 

This equation determines q,,, if I; (the smallest element of the I'  set) is given. Using 
( 3 5 ) ,  ( 3 4 )  can be written in the form 

This expression will be further simplified and used in 0 4 .  

4. Higher level equations, equations for the holes and for the real roots 

Equations (9) for the complex roots can be written in exponential form: 

The sum containing the real roots can be evaluated straightforwardly using the 

If q1 is a wide root we obtain: 
Fourier expansion ( 1 3 )  and the density of the real roots ( 3 2 ) .  

exp{iG( T,)} = - 1 (38) 
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where 

G ( z ) =  - 3 d(z-@,-ifY,$Y) 
h = l  

This is the result of BW. 

Since the density of the real roots is the same as found by BW, the evaluation of 
the sum over the real roots in (37) leads-in the same way as in BW-to the conclusion 
that the close roots must have quartet or two-string structure. Utilising this property 
of the close roots and then equation (35) we find also for the close roots 

exp{iG( 7,)) = - 1. (40) 

It is remarkable that the 6 term in equation (23) of BW vanishes as a consequence of 

Let us introduce the set of parameters { ~ ~ } j " = ~  for the complex roots as in BW, namely 

(41) 

(35). 

for a two-string (z, f = z - iy )  

for a wide pair ( a + i T ,  a-iq T >  y). 
for a quartet (z  = a +iT, i, z - iy, i +ir ,  f y < T < y)  

a* i(T-fy) 

The number of these parameters is 

9 = Nstring +2 N,,,,,, + 2 N, = N ,  + 2 N,. 

We can see from (21) and (42) that 

S' = f N, - 9. (43) 

If the {xj} set is used, the equations for the complex roots ((38) and (40)) read 

Thus the higher level equations have a structure analogous to that in the planar case, 
i.e. in a wider sense they have the same structure for the whole antiferromagnetic region. 

Let us now return to the evaluation of the RHS of (36). This can be carried out in 
a straightforward manner with the help of (32) and utilising the quartet (or two-string) 
structure of the close roots: 

Here am(u, k) is the Jacobian elliptic function; K is the complete elliptic function of 
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the first kind with the modulus k for which 

K’/  K = y /  T (46) 

and i = 1 if xj is the parameter of a member of a wide pair and i = 2 otherwise. The 
appearance of functions fi and fi removes the jumps of the 4 functions in (45). 
Moreover: 

02 e-Ym 

W x , y ) = x +  c sin(2mx). 
m cosh( -p) 

(47) 

Now the equations for the real roots (22) and for the holes (28) read: 

I;/ N = T - ’ (  v j )  
I;,/ N = T - ’ ( @ ~ ) .  (49) 

(48) 

Equations (44) and (49) are a closed system of equations for the variables xj and 
Oh. Once this system is solved through (41) the complex roots, and by (48) the real 
roots can be found. 

In discussing the possible solutions attention must be paid to the fact, that in 
equation (49) (and also in (48)) in addition to the parameters of the holes I:, 
(parameters of the real roots I ; )  an extra parameter I; appears, moreover it appears 
in the form ( 1 ; - 4 ) / ( 2 N ) .  Due to this, the decreasing or increasing of I ; ,  i.e. the lower 
boundary of the I’ set by one has the same effect on the solution as shifting the whole 
I’  set by a half. This indicates that equations (48) and (49) may have different solutions 
for different values of I; .  Remember that we have no explicit restriction for the 
boundaries of the I’ set. The only requirement is that the rapidities and the parameters 
of the holes must fall within an interval of length T. If this interval is given, for example, 
by 

@ h,  Re xj 6 f~ (50) 
I 

-TT TJ9 

we can find different solutions for different values of 1; which satisfy (50). 

Nh = 0, 9’ = 0 so P = M = f N  and S’ = 0. From (48) and (45) we obtain: 
The simplest example is given by the two ground states which are characterised by 

where F (  cp, k) is the elliptic integral of the first kind and I; = I; + P - j was used. It 
can be seen that for Ib +4 = 0 and for 1; +f = 1 we get different solutions both satisfying 
(50). For other values of I;+$ the solutions will not satisfy (50) or in other words 
these solutions give the same momentum set { kj}  as one of the solutions with I ;  +4 = 0 
and 1 because of the periodicity in equation (7).  

The two different sets of momenta {k,} can be obtained from (7) and, e.g. for y +  0 
( p  + l ) ,  have the form: 
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Let us consider the general case! Since it is not known a priori, what values of 1; 
are compatible to (50), write (49) in exponential form: 
( - 1 ) N / 2 + 1 ; + 1 / 2  

= exp{ iNam( Feh,  k)} 

which shows that only the parity of Zlp +f is important. In order to obtain a solution 
of the Bethe ansatz equations we have to solve (44) and (52) for the complex roots 
and for the holes with a given parity of I ;  +f  and with the constraint (50). Then (48) 
and (50) determine the real roots, together with the actual value of 1;. 

There is however an other possibility, too. Since only the parity of Ilp +f is important, 
and the wavenumbers are periodic functions of the rapidities, we may drop the 
constraint (50) for the time and fix I > + $  to be 0 or 1. Naturally we will get different 
rapidity sets but some of them from the group Zlp +f = 0 may be identical to others 
from the group Ilp +f = 1, in the sense that they determine the same momentum set. 

In order to avoid this duplication let us examine how two identical sets can belong 
to different values of Zlp ++. 

Let us suppose that {xj},"=, and 

7 I < 7 2 <  * . e  < 7 P  (53) 
are solutions of (44), (48) and (49) with a given 1;. (Equation (53) contains the real 
roots and the parameters of the holes as well.) An equivalent set can be constructed 
by increasing some of the 7's by n. (The { x j }  set remains the same because (44) does 
not change when some of the e h ' s  are increased by T.) This can be done generally 
in the following way: 

T m + l < ? - / , + 2 <  . . .  < q p < 7 1 + T < < 7 ) 2 f T <  . . .  < v m + n  
(the 7 ' s  must again fall within an interval of length n).  It is easy to check that if we 
shift m 7's including n holes then (54) is a solution of (44), (48) and (49) with IF,  
for which 

(54) 

I;= I c + 2 m - n .  ( 5 5 )  

In our case I b - Z g =  1 and as m 3  n z O  we get m = n = 1. This means that if v l  in 
(53) is a parameter of a hole then (53) is equivalent to one of those sets which can 
be obtained by solving (44), (48) and (49) with IF = 1;- 1. This result allows us to 
determine the number of really different (non-equivalent) solutions to (44), (48) and 
(49). 

In both cases ( I ;+ i=O and I ; + ; =  1)  we have (&) possibilities for the sites of 
holes. We have to exclude those solutions from the group I l p + f =  1 for which 1; 
belongs to a hole. The number of these states is apparently (,&-Il) so the ratio of 
'double' solutions to second type solutions is 

which is of the order of 1/ N if N + 
the 'overlapping' of the first and second type solutions vanishes in the N + c o  limit. 

while Nh and 9' are finite. We conclude that 



3038 A Virosztek and F Woynarovich 

Once we have all the non-equivalent solutions for Z I p + f = O  and 1, in the way 
described above (see (53) and (54)) all the rapidity sets may be made to satisfy the 
constraint (50), and at the same time the corresponding ZIps can be found too (see 
(55)). If we have all solutions satisfying (50) it is natural to regard those with 
Z’, +t = even to be excited states above the ground state with ZIp +f = 0 and those with 
Z ; + f  = odd excited states above the ground state with ZIp +$= 1. This picture is 
supported by the structure of the energy and the momenta of the excited states. 

5. Energy and momentum 

The energy and momentum of a state can be calculated in a straightforward way using 
(10)-(13), (32) and (35). The energy has the same form as derived by BW and Johnson 
et a1 (1973): 

Nh 

E - & = & +  c & ( O h )  
h = l  

( l - t anh(ym))+ i  (57) 

(58) 
a 

a u  
K 

E(x)=-sinh y d n  , dn(u, k)=-am(u, k). 
7T 

In the momentum ZIp appears: 
Nh 

h = l  
K = KO+ P ( O ~ )  

KO = ( i N  + Z’, - 4) 7~ 

In the energies of the two kinds of states there are no explicit differences but the 
momenta for the two kinds of states differ also explicitly through KO. If we regard 
the holes as some sort of excitations, each excitation has the dispersion independently 
of ZIp 

- K 
~ ( p )  = - sinh y(  1 - k2 cos2p)1’2, 

7T 

(where the restriction on p follows from (50)), and the excited states can be regarded 
as states obtained by introducing excitations in one of the ground states, and the KO 
in (59) refers to the ground state in which the excitations are introduced. 

Remember that for the two types of excitations the allowed values of Oh’s are 
different and the difference is of the order of 1/N (see (52)). Thus in the N+co limit 
not only the ground states become degenerate but the excitations above them, too. 

6. Summary 

In the present work we have studied the excitations of the anisotropic antiferromagnetic 
Heisenberg chain (1 )  for values of the anisotropy parameter p > 1 .  In this region the 
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ground state is doubly degenerated in the N-oo limit and we have investigated the 
properties of the excitations above the two ground states. Our study is based on the 
Bethe ansatz equations (9) for the problem and we examined not only the density of 
the real roots but also the values of the roots themselves. The method used enables 
us to distinguish between the two types of ground states and excitations. 

After rederiving the known result for the regular density of the real roots we 
eliminated these roots from the equations. The equations for the complex roots become 
slightly simpler as a consequence of our treatment (44). (In practice, the e* factor in 
equation ( 2 5 )  of BW has been evaluated and has been found to be equal to unity.) 
This means that the higher level equations have the same form for the whole antifer- 
romagnetic region. Moreover we have given the equations for the parameters of the 
holes ( 5 2 )  and they show that the allowed values are different for the two types of 
excitations. (The difference is of the order of 1/ N.) 

We have calculated the number of solutions for a given number of holes and 
complex roots; there are some identical solutions in the two groups of states but the 
‘overlapping’ between the two groups vanishes in the N + m  limit. The excitation 
energy has the same form for the two types of states so the corresponding states will 
become degenerate in the N + CO limit. 
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